PM2.5传感器工作原理
2020年07月08日 09:31
来源:青岛崂山电子仪器总厂
四大类传感器原理介绍:
1,光散射法
光散射原理有LED光(普通光学),激光等原理,传感器可以有效的探测出粒径约0.5um以上颗粒,至此光散射法听着可靠性相对较低,然而又由于光散射原理探头相对便宜,探头易安装,使用,做为监测应用相对合适,相对其它原理有较多的优势,且应用商选择质量较好,并相对稳定,灵敏的探头,数据可靠性大大增加!目前市面上光散射法应用成熟普遍,是pm2.5监测的较好选择!
2、重量法
我国目前对大气颗粒物的测定主要采用重量法。其原理是分别通过一定切割特征的采样器,以恒速抽取定量体积空气,使环境空气中的PM2.5和PM10被截留在已知质量的滤膜上,根据采样前后滤膜的质量差和采样体积,计算出PM2.5和PM10的浓度。必须注意的是,计量颗粒物的单位ug/m3中分母的体积应该是标准状况下(0℃、101.3kPa)的体积,对实测温度、压力下的体积均应换算成标准状况下的体积。
环境空气监测中采样环境及采样频率要按照HJ.T194的要求执行。PM10连续自动监测仪的采样切割装置一般设计成旋风式,它在规定的流量下,对空气中10um粒径的颗粒物具有50%的采集效率、以下为其技术性能指标表。
3、微量振荡天平法
TEOM微量振荡天平法是在质量传感器内使用一个振荡空心锥形管,在其振荡端安装可更换的滤膜,振荡频率取决于锥形管特征和其质量。当采样气流通过滤膜,其中的颗粒物沉积在滤膜上,滤膜的质量变化导致振荡频率的变化,通过振荡频率变化计算出沉积在滤膜上颗粒物的质量,再根据流量、现场环境温度和气压计算出该时段颗粒物标志的质量浓度。
微量振荡天平法颗粒物监测仪由PM10采样头、PM2.5切割器、滤膜动态测量系统、采样泵和仪器主机组成。流量为1m3/h环境空气样品经过PM10采样头和PM2.5切割器后,成为符合技术要求的颗粒物样品气体。样品随后进入配置有滤膜动态测量系统(FDMS)的微量振荡天平法监测仪主机,在主机中测量样品质量的微量振荡天平传感器主要部件是一支一端固定,另一端装有滤膜的空心锥形管,样品气流通过滤膜,颗粒物被收集在滤膜上。在工作时空心锥形管是处于往复振荡的状态,它的振荡频率会随着滤膜上收集的颗粒物的质量变化发生变化,仪器通过准确测量频率的变化得到采集到的颗粒物质量,然后根据收集这些颗粒物时采集的样品体积计算得出样品的浓度。
4、Beta射线法/β射线法
Beta射线仪则是利用Beta射线衰减的原理,环境空气由采样泵吸入采样管,经过滤膜后排出,颗粒物沉淀在滤膜上,当β射线通过沉积着颗粒物的滤膜时,Beta射线的能量衰减,通过对衰减量的测定便可计算出颗粒物的浓度。
Beta射线法颗粒物监测仪由PM10采样头、PM2.5切割器、样品动态加热系统、采样泵和仪器主机组成。流量为1m3/h的环境空气样品经过PM10采样头和PM2.5切割器后成为符合技术要求的颗粒物样品气体。在样品动态加热系统中,样品气体的相对湿度被调整到35%以下,样品进入仪器主机后颗粒物被收集在可以自动更换的滤膜上。在仪器中滤膜的两侧分别设置了Beta射线源和Beta射线检测器。随着样品采集的进行,在滤膜上收集的颗粒物越来越多,颗粒物质量也随之增加,此时Beta射线检测器检测到的Beta射线强度会相应地减弱。由于Beta射线检测器的输出信号能直接反应颗粒物的质量变化,仪器通过分析Beta射线检测器的颗粒物质量数值,结合相同时段内采集的样品体积,终得出采样时段的颗粒物浓度。配置有膜动态测量系统后,仪器能准确测量在这个过程中挥发掉的颗粒物,使终报告数据得到有效补偿,理接近于直实值。
由于2,3,4等原理应用比较困难并且价格较高!我们重点看下第1个的原理:
光散射原理的PM2.5传感有两种
红外光
激光器
普通的、低价的光散射原理的PM2.5传感器的原理是采用红外光,对1微米以下的颗粒物尤其是浓度较低的时候很难产生准确的散射判断。而可以获取单位体积内空气中0.3-2.5微米直径颗粒物准确浓度。
关键词:
PM2.5传感器工作原理
免责声明
- 凡本网注明“来源:化工仪器网”的所有作品,均为浙江兴旺宝明通网络有限公司-化工仪器网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其他方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:化工仪器网”。违反上述声明者,本网将追究其相关法律责任。
- 本网转载并注明自其他来源(非化工仪器网)的作品,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。
- 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。